Identifiers and Description

Gene Model Identifier

TTHERM_00655890

Standard Name

NGOA1 (Non-GrOwth )

Aliases

PreTt03683 | 96.m00152 | NgoA

Description

NGOA1 NgoA transmembrane protein putative; NgoA; hypothetical protein

Genome Browser (Macronucleus)



Genome Browser (Micronucleus)

External Links

Gene Ontology Annotations

Biological Process

Domains

No Data fetched for Domains

Gene Expression Profile

Vegetative Cell Cycle (Zhang et al., 2023)

GeneMania

Tetrahymena Stock Center

  • ( SD02235 ) Micronucleus: neo3 into coding of NgoA gene Macronucleus: partial KO of NgoA with neo3
  • ( SD02297 ) Micronucleus: neo3 into coding of NgoA gene
  • ( SD02298 ) Micronucleus: neo3 into coding of NgoA gene partial
  • ( SD02486 ) Macronucleus: Replace NgoA with n-terminal GFP tagged version with neo3 in 3’ flanking region of NgoA
  • ( SD02487 ) Micronucleus: neo3 into coding of NgoA gene
  • ( SD02488 ) Micronucleus: neo3 into NgoA coding Macronucleus: neo3 into NgoA coding
  • ( SD02489 ) Micronucleus: neo3 into NgoA coding Macronucleus: neo3 into NgoA coding
  • ( SD02490 ) Micronucleus: neo3 into NgoA coding Macronucleus: neo3 into NgoA coding
  • ( SD02491 ) Micronucleus: neo3 into NgoA coding Macronucleus: neo3 into NgoA coding
  • ( SD02492 ) Micronucleus: neo3 into NgoA gene coding Macronucleus: c-terminal HA tagged NgoA with flanking neo3—don't know where it is located.
  • ( SD02493 ) Micronucleus: neo3 into NgoA gene coding Macronucleus: c-terminal HA tagged NgoA with flanking neo3—don't know where it is located.
  • ( SD02494 ) Micronucleus: neo3 into NgoA gene coding Macronucleus: c-terminal HA tagged NgoA with flanking neo3—don't know where it is located.
  • ( SD02703 ) Macronucleus: GFP into NgoA locus with 104 bp of NgoA promoter. and neo3 upstream

Homologs

No Data fetched for Homologs

General Information

No. Gene Name(s) Paragraph Text
2216 NGOA1, HHO1, CYP1, CDC2 HHO1 knockouts show no global increase or decrease in the amount of transcription in the cell; however, these same knockouts also show that Hho1p is important for the transcriptional regulation of individual genes in response to stimuli, such as starvation. The differential regulation of Hho1p by phosphorylation under vegetative growth and starvation conditions has been well studied. During vegetative growth, Hho1p is phosphorylated on five closely spaced residues, preventing it from interacting with chromatin, likely by interfering with its ability to bind DNA. Under these conditions, expression is increased for CDC2, a homolog of the cyclin dependent kinases responsible for histone H1 phosphorylation, possibly creating a positive feedback loop that promotes the cell cycle. During starvation conditions, Hho1p is dephosphorylated, allowing it to bind to chromatin. This stimulates the expression of some genes, including ngoA, and protease genes such as CYP1, while inhibiting expression of other genes, such as CDC2. This decrease in CDC2 expression may be responsible for cell cycle arrest during starvation.

Associated Literature

  1. Ref:17188762: Feng L, Miao W, Wu Y (2007) Differentially expressed genes of Tetrahymena thermophila in response to tributyltin (TBT) identified by suppression subtractive hybridization and real time quantitative PCR. Aquatic toxicology (Amsterdam, Netherlands) 81(1):99-105
  2. Ref:11891286: Shang Y, Song X, Bowen J, Corstanje R, Gao Y, Gaertig J, Gorovsky MA (2002) A robust inducible-repressible promoter greatly facilitates gene knockouts, conditional expression, and overexpression of homologous and heterologous genes in Tetrahymena thermophila. Proceedings of the National Academy of Sciences of the United States of America 99(6):3734-9
  3. Ref:11972045: Dou Y, Gorovsky MA (2002) Regulation of transcription by H1 phosphorylation in Tetrahymena is position independent and requires clustered sites. Proceedings of the National Academy of Sciences of the United States of America 99(9):6142-6
  4. Ref:12356861: Dou Y, Bowen J, Liu Y, Gorovsky MA (2002) Phosphorylation and an ATP-dependent process increase the dynamic exchange of H1 in chromatin. The Journal of cell biology 158(7):1161-70
  5. Ref:10207086: Huang H, Smothers JF, Wiley EA, Allis CD (1999) A nonessential HP1-like protein affects starvation-induced assembly of condensed chromatin and gene expression in macronuclei of Tetrahymena thermophila. Molecular and cellular biology 19(5):3624-34
  6. Ref:8756729: Shen X, Gorovsky MA (1996) Linker histone H1 regulates specific gene expression but not global transcription in vivo. Cell 86(3):475-83
  7. Ref:1996118: Dedon PC, Soults JA, Allis CD, Gorovsky MA (1991) Formaldehyde cross-linking and immunoprecipitation demonstrate developmental changes in H1 association with transcriptionally active genes. Molecular and cellular biology 11(3):1729-33
  8. Ref:3005971: Martindale DW, Martindale HM, Bruns PJ (1986) Tetrahymena conjugation-induced genes: structure and organization in macro- and micronuclei. Nucleic acids research 14(3):1341-54
  9. Ref:6646127: Martindale DW, Bruns PJ (1983) Cloning of abundant mRNA species present during conjugation of Tetrahymena thermophila: identification of mRNA species present exclusively during meiosis. Molecular and cellular biology 3(10):1857-65

Sequences

>TTHERM_00655890(coding)
ATGTTCTCTAAAAAAAAAAAACAAAAAACGAAAAAAGAACCAAAACAAACAAACAAAGAA
ACAAACAAACAACCTCTAGCTCACAAAGAGATTATCTTACTTCTTTCCTGTGTTTCTGCG
GTATCTCGGAAACCTTTTTTGCAAGACTTTCAGTTTCTAGCAAGTCTCTTACTAAAAACT
AAAAGGCTTCTCTAAATCAGCTGCTATTTGTTCATTCATTCTAATGGAAATAAGCTCCTT
TGTCTTTCCTCTGGGTTTCTGAAGAAGTCTTCCTTCCCTCCCGGATGA


>TTHERM_00655890(gene)
AAACTTATTTGTAAATTAAGAAAAAAAAAAACAAAAAAACAAAAAAAACAAAAAAAAAAC
AAAAAAACAAACAAACAAAAACAAAAAAAACCAAAAAAACAAAAAAAATGTTGTGATTTT
TTTTACTTTTCTGGTTTTAACTGGAATTGGGAATACACTATTCGAATACTTTCTTGAAAT
GTTCGTGACTGCTCATATTTAACTGGCCTCAGATCTACTTGCTAATTTTTGAGAGAAGAG
AATTTGCTCAGATACCAATCAGCCAATGCTCTGAAAAGCTTTTTAAAAAAAAAGAAACAA
AAAAGAAACAAAAAAAACCCCAAAAAACACAAAAAACACTCAAAGAATAAAATGTTTTTT
AGCAAATTTCCCTCCTTCTGAATCTCAAAAATGTTCTCTAAAAAAAAAAAACAAAAAACG
AAAAAAGAACCAAAACAAACAAACAAAGAAACAAACAAACAACCTCTAGCTCACAAAGAG
ATTATCTTACTTCTTTCCTGTGTTTCTGCGGTATCTCGGAAACCTTTTTTGCAAGACTTT
CAGTTTCTAGCAAGTCTCTTACTAAAAACTAAAAGGCTTCTCTAAATCAGCTGCTATTTG
TTCATTCATTCTAATGGAAATAAGCTCCTTTGTCTTTCCTCTGGGTTTCTGAAGAAGTCT
TCCTTCCCTCCCGGATGAGTTCACTTTTGGCAAGCCTGTTTTTGATTTCAGTCTCTTTGC
TTCTTAAAAAAAAAACGAAAAAACAAAGAAAAACCAAACAAAAAGAACAAACAAACACAC
ACACATCTTTGAGCAAGTAGATTTTCTTTCTTACATAAATGCATACATATCTTTCTTTCT
ATCTATCTATCTACCTACCTACATATATCCATATATATCCTTTAGGCTTTTAGGATTATA
GTATGCCAGTCTGACTTTCACTTGATAATGGACAGAAGTATTCATGTGCTTTTAATCTAA
GAAAAAGGGTACAGCTCTCAATAATATATGAAGTATGAAATAGGAAGCTACTTTTTGGCA
GTAAAATCTGTTTTATTTGCTCCAGCTAAATCCATTTCTTAACTTATGACTCTATTACGA
ATGTAATTTCGTTTCATGTTTATAAGTTGCTCTTATATTTACCTCGCTCTAATTCTCTGG
CTTTGCTTATTTTAAGCAGACTGCTTCATCTGCTTTTTTTGCTAAAACGATATTAAATGG
CTTGTTTAAACCAGTACTTCTTGGTAGGAAATGCCTATATTTTTTAGCATCAGAATTTTA
GCCTTTGCTTGCTACTTCCTTAGATTTCTAGCACACCATTATACAAATTTATACTTTATC
ATCATAATTATTATTATTTTTATTACTATTATATTTATTTACATACTAAGGTGTATTTTT
TCTAATACTTCTCAATTCCTCTATTAAAATAAA


>TTHERM_00655890(protein)
MFSKKKKQKTKKEPKQTNKETNKQPLAHKEIILLLSCVSAVSRKPFLQDFQFLASLLLKT
KRLLQISCYLFIHSNGNKLLCLSSGFLKKSSFPPG